Index to Chiropractic Literature
Index to Chiropractic Literature
My ICL     Sign In
Friday, January 3, 2025
Index to Chiropractic LiteratureIndex to Chiropractic LiteratureIndex to Chiropractic Literature
Share:


For best results switch to Advanced Search.
Article Detail
Return to Search Results
ID 17137
  Title Comparison of a triaxial fluxgate magnetometer and Toftness sensometer for body surface EMF measurement
URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769295/
Journal J Can Chiropr Assoc. 2004 Dec;48(4):273-281
Author(s)
Subject(s)
Peer Review Yes
Publication Type Article
Abstract/Notes Introduction: The use of magnetic fields to treat disease has intrigued mankind since the time of the ancient Greeks. More recently it has been shown that electromagnetic field (EMF) treatment aids bone healing, and repetitive transcranial magnetic stimulation (rTMS) appears to be beneficial in treating schizophrenia and depression. Since external EMFs influence internal body processes, we hypothesized that measurement of body surface EMFs might be used to detect disease states and direct the course of subsequent therapy. However, measurement of minute body surface EMFs requires use of a sensitive and well documented magnetometer. In this study we evaluated the sensitivity and frequency response of a fluxgate magnetometer with a triaxial probe for use in detecting body surface EMF and we compared the magnetometer readings with a signal from a Toftness Sensometer, operated by an experienced clinician, in the laboratory and in a clinical setting.

Methods: A Peavy Audio Amplifier and variable power output Telulex signal generator were used to develop 50 ìT EMFs in a three coil Merritt coil system. A calibrated magnetometer was used to set a 60 Hz 50 ìT field in the coil and an ammeter was used to measure the current required to develop the 50 ìT field. At frequencies other than 60 Hz, the field strength was maintained at 50 ìT by adjusting the Telulex signal output to keep the current constant. The field generated was monitored using a 10 turn coil connected to an oscilloscope. The oscilloscope reading indicated that the field strength was the same at all frequencies tested. To determine if there was a correspondence between the signals detected by a fluxgate magnetometer (FGM1) and the Toftness Sensometer both devices were placed in the Merritt coil and readings were recorded from the FGM1 and compared with the ability of a highly experienced Toftness operator to detect the 50 ìT field. Subsequently, in a clinical setting, FGM1 readings made by an FGM1 technician and Sensometer readings were made by 4 Toftness Sensometer operators, having various degrees of experience with this device. Each examiner obtained instrument readings from 5 different volunteers in separate chiropractic adjusting rooms. Additionally, one of the Toftness Sensometers was equipped with an integrated fluxgate magnetometer (FGM2) and this magnetometer was used to obtain a second set of EMF readings in the clinical setting.

Results: The triaxial fluxgate magnetometer was determined to be moderately responsive to changes in magnetic field frequency below 10 Hz. At frequencies above 10 Hz the readings corresponded to that of the ambient static geofield. The practitioner operating the Toftness Sensometer was unable to detect magnetic fields at high frequencies (above 10 Hz) even at very high EMFs. The fluxgate magnetometer was shown to be essentially a DC/static magnetic field detector and like all such devices it has a limited frequency range with some low level of sensitivity at very low field frequencies. The inter-examiner reliability of four Toftness practitioners using the Sensometer on 5 patients showed low to moderate correlation.

Conclusions: The fluxgate magnetometer although highly sensitive to static (DC) EMFs has only limited sensitivity to EMFs in the range of 1 to 10 Hz and is very insensitive to frequencies above 10 Hz. In laboratory comparisons of the Sensometer and the fluxgate magnetometer there was an occasional correspondence between the two instruments in detecting magnetic fields within the Merritt coil but these occasions were not reproducible. In the clinical studies there was low to moderate agreement between the clinicians using the Sensometer to diagnosing spinal conditions and there was little if any agreement between the Sensometer and the fluxgate magnetometer in detecting EMFs emanating from the volunteers body surface.

This abstract is reproduced with the permission of the publisher. Full text is available free online for this article; click on the above link.


   Text (Citation) Tagged (Export) Excel
 
Email To
Subject
 Message
Format
HTML Text     Excel



To use this feature you must register a personal account in My ICL. Registration is free! In My ICL you can save your ICL searches in My Searches, and you can save search results in My Collections. Be sure to use the Held Citations feature to collect citations from an entire search session. Read more search tips.

Sign Into Existing My ICL Account    |    Register A New My ICL Account
Search Tips
  • Enclose phrases in "quotation marks".  Examples: "low back pain", "evidence-based"
  • Retrieve all forms of a word with an "asterisk*", also called a wildcard or truncation.  Example: "chiropract*" retrieves chiropractic, chiropractor, chiropractors
  • Register an account in My ICL to save search histories (My Searches) and collections of records (My Collections)
Advanced Search Tips

:)