Index to Chiropractic Literature
Index to Chiropractic Literature
My ICL     Sign In
Friday, December 27, 2024
Index to Chiropractic LiteratureIndex to Chiropractic LiteratureIndex to Chiropractic Literature
Share:


For best results switch to Advanced Search.
Article Detail
Return to Search Results
ID 21212
  Title Reliability of sonomyography for pectoralis major thickness measurement
URL http://www.ncbi.nlm.nih.gov/pubmed/20605558
Journal J Manipulative Physiol Ther. 2010 Jun;33(5):386-394
Author(s)
Subject(s)
Peer Review Yes
Publication Type Article
Abstract/Notes Objective: Muscle thickness is a widely used parameter for quantifying muscle function in ultrasound imaging. However, current measurement techniques generally rely on manual digitization, which is subjective, time consuming, and prone to error. The primary purposes of this study were to develop an automated muscle boundary tracking algorithm to overcome these limitations and to report its intraexaminer reliability on pectoralis major muscle.

Methods: Real-time B-mode ultrasound images of the pectoralis major muscles were acquired by an integrated data acquisition system. A transducer placement protocol was developed to facilitate better repositioning of an ultrasound transducer. Intraexaminer reliability of the tracking algorithm for static measurements was studied using intraclass correlation coefficient based on the thickness data from 11 healthy subjects recruited from a chiropractic college measured at 3 independent sessions. Standard error of measurement and minimal detectable change were calculated. Feasibility of using the tracking algorithm for dynamic measurements was also evaluated.

Results: All calculated intraclass correlation coefficients were larger than 0.96, indicating excellent reliability of the sonomyographic measurements. Minimal detectable changes were 9.7%, 6.7%, and 6.8% of the muscle thickness at the lateral, central, and medial aspects, respectively. For a 400-frame image stack with 3 pairs of 40 × 40 pixels tracking windows, the tracking took about 80 seconds to complete.

Conclusions: The tracking algorithm offers precise and reliable measurements of muscle thickness changes in clinical settings with potential to quantify the effects of a wide variety of chiropractic techniques on muscle function.

This abstract is reproduced with the permission of the publisher; full text by subscription. Click on the above link and select a publisher from PubMed's LinkOut feature.


   Text (Citation) Tagged (Export) Excel
 
Email To
Subject
 Message
Format
HTML Text     Excel



To use this feature you must register a personal account in My ICL. Registration is free! In My ICL you can save your ICL searches in My Searches, and you can save search results in My Collections. Be sure to use the Held Citations feature to collect citations from an entire search session. Read more search tips.

Sign Into Existing My ICL Account    |    Register A New My ICL Account
Search Tips
  • Enclose phrases in "quotation marks".  Examples: "low back pain", "evidence-based"
  • Retrieve all forms of a word with an "asterisk*", also called a wildcard or truncation.  Example: "chiropract*" retrieves chiropractic, chiropractor, chiropractors
  • Register an account in My ICL to save search histories (My Searches) and collections of records (My Collections)
Advanced Search Tips

:)