Index to Chiropractic Literature
Index to Chiropractic Literature
My ICL     Sign In
Friday, December 27, 2024
Index to Chiropractic LiteratureIndex to Chiropractic LiteratureIndex to Chiropractic Literature
Share:


For best results switch to Advanced Search.
Article Detail
Return to Search Results
ID 22411
  Title Spinous process hypertrophy associated with implanted devices in the external link model
URL http://www.ncbi.nlm.nih.gov/pubmed/22608288
Journal J Manipulative Physiol Ther. 2012 Jun;35(5):367-371
Author(s)
Subject(s)
Peer Review Yes
Publication Type Article
Abstract/Notes

Objective: Recent development of a chiropractic subluxation mimic, the external link model, uses titanium implants on lumbar vertebrae in the rat. The objective of this study was to evaluate potential correlations in the model between linking history, bone resorption, exudate formation, and experimentally induced intervertebral hypomobility.

Methods: Serial lateral radiographs of 73 male Sprague Dawley rats with implanted devices were reviewed. A baseline radiograph was obtained after a 6-week surgical recovery period, and a second radiograph was exposed after an 8-week hypomobility induction period. Spinous hypertrophy at the implant sites (L4, L5, and L6) was measured on the radiographs with a vernier caliper. Bone resorption and exudate build-up were assessed and compared with intervertebral hypomobility data previously collected. Data trends were described using cross-tabulated counts, analysis of variance, and regression analysis.

Results: Cross-tabulation suggested differences between hypomobility-induced rats and control rats. However, correlation analysis showed no predictive role for spinous hypertrophy relative to intervertebral mobility. Similarly, exudate level did not predict spinous hypertrophy. However, implant presence and vertebral level had a significant interaction, with moderate and severe hypertrophy occurring more frequently at L4 and L6 in hypomobility-induced rats. Age did not materially influence spinous hypertrophy.

Conclusions: Mechanical stresses produced at the implant bone interface in rats with induced hypomobility contribute to spinous hypertrophy beyond that simply due to the presence of the implants. However, spinous hypertrophy does not contribute significantly to intervertebral hypomobility in the external link model.

This abstract is reproduced with the permission of the publisher; full text by subscription. Click on the above link and select a publisher from PubMed's LinkOut feature.

This is temporarily free from the publisher. Click on this link for free full text.


 

   Text (Citation) Tagged (Export) Excel
 
Email To
Subject
 Message
Format
HTML Text     Excel



To use this feature you must register a personal account in My ICL. Registration is free! In My ICL you can save your ICL searches in My Searches, and you can save search results in My Collections. Be sure to use the Held Citations feature to collect citations from an entire search session. Read more search tips.

Sign Into Existing My ICL Account    |    Register A New My ICL Account
Search Tips
  • Enclose phrases in "quotation marks".  Examples: "low back pain", "evidence-based"
  • Retrieve all forms of a word with an "asterisk*", also called a wildcard or truncation.  Example: "chiropract*" retrieves chiropractic, chiropractor, chiropractors
  • Register an account in My ICL to save search histories (My Searches) and collections of records (My Collections)
Advanced Search Tips

:)