For best results switch to Advanced Search. |
Article Detail |
Return to Search Results | ||||||||||||
ID | 24420 | ||||||||||||
Title | Development of a linked segment model to derive patient low back reaction forces and moments during high-velocity low-amplitude spinal manipulation | ||||||||||||
URL | http://www.jmptonline.org/article/S0161-4754%2816%2900056-7/fulltext | ||||||||||||
Journal | J Manipulative Physiol Ther. 2016 Mar-Apr;39(3):176-184 | ||||||||||||
Author(s) | |||||||||||||
Subject(s) | |||||||||||||
Peer Review | Yes | ||||||||||||
Publication Type | Article | ||||||||||||
Abstract/Notes | Objective: The purpose of this paper is to present the experimental setup, the development, and implementation of a new scalable model capable of efficiently handling data required to determine low back kinetics during high-velocity low-amplitude spinal manipulation (HVLA-SM). Methods: The model was implemented in Visual3D software. All contact forces and moments between the patient and the external environment (2 clinician hand contact forces, 1 contact force between the patient and the treatment table), the patient upper body kinematics, and inertial properties were used as input. Spine kinetics and kinematics were determined from a single HVLA-SM applied to one healthy participant in a right side-lying posture to demonstrate the model’s utility. The net applied force was used to separate the spine kinetic and kinematic time-series data from the HVLA-SM into preload as well as early and late impulse phases. Results: Time-series data obtained from the HVLA-SM procedure showed that the participant’s spine underwent left axial rotation, combined with extension, and a reduction in left lateral bending during the procedure. All components of the reaction force, as well as the axial twist and flexion/extension reaction moments demonstrated a sinusoidal pattern during the early and late impulse phases. During the early impulse phase, the participant’s spine experienced a leftward axial twisting moment of 37.0 Nm followed by a rightward moment of −45.8 Nm. The lateral bend reaction moment exhibited a bimodal pattern during the early and late impulse phases. Conclusion: This model was the first attempt to directly measure all contact forces acting on the participant/patient’s upper body, and integrate them with spine kinematic data to determine patient low back reaction forces and moments during HVLA-SM in a side-lying posture. Advantages of this model include the brevity of data collection (<1 hour), and adaptability for different patient anthropometries and clinician-patient contacts. This abstract is reproduced with the permission of the publisher; click on the above link for free full text.
|
||||||||||||
|
|||||||||||||
Text (Citation)
Tagged (Export)
Excel
|
|||||||||||||
|