Index to Chiropractic Literature
Index to Chiropractic Literature
My ICL     Sign In
Sunday, December 15, 2024
Index to Chiropractic LiteratureIndex to Chiropractic LiteratureIndex to Chiropractic Literature
Share:


For best results switch to Advanced Search.
Article Detail
Return to Search Results
ID 26231
  Title Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilization
URL https://chiromt.biomedcentral.com/articles/10.1186/s12998-020-00335-4
Journal Chiropr & Manual Ther. 2020 ;28(47):Online access only 13 p
Author(s)
Subject(s)
Peer Review Yes
Publication Type Article
Abstract/Notes

Background: Chronic spinal pain conditions affect millions of US adults and carry a high healthcare cost burden, both direct and indirect. Conservative interventions for spinal pain conditions, including chiropractic care, have been associated with lower healthcare costs and improvements in pain status in different clinical populations, including veterans. Little is currently known about predicting healthcare service utilization in the domain of conservative interventions for spinal pain conditions, including the frequency of use of chiropractic services. The purpose of this retrospective cohort study was to explore the use of supervised machine learning approaches to predicting one-year chiropractic service utilization by veterans receiving VA chiropractic care.

Methods: We included 19,946 veterans who entered the Musculoskeletal Diagnosis Cohort between October 1, 2003 and September 30, 2013 and utilized VA chiropractic services within one year of cohort entry. The primary outcome was one-year chiropractic service utilization following index chiropractic visit, split into quartiles represented by the following classes: 1 visit, 2 to 3 visits, 4 to 6 visits, and 7 or greater visits. We compared the performance of four multiclass classification algorithms (gradient boosted classifier, stochastic gradient descent classifier, support vector classifier, and artificial neural network) in predicting visit quartile using 158 sociodemographic and clinical features.

Results: The selected algorithms demonstrated poor prediction capabilities. Subset accuracy was 42.1% for the gradient boosted classifier, 38.6% for the stochastic gradient descent classifier, 41.4% for the support vector classifier, and 40.3% for the artificial neural network. The micro-averaged area under the precision-recall curve for each one-versus-rest classifier was 0.43 for the gradient boosted classifier, 0.38 for the stochastic gradient descent classifier, 0.43 for the support vector classifier, and 0.42 for the artificial neural network. Performance of each model yielded only a small positive shift in prediction probability (approximately 15%) compared to naïve classification.

Conclusions: Using supervised machine learning to predict chiropractic service utilization remains challenging, with only a small shift in predictive probability over naïve classification and limited clinical utility. Future work should examine mechanisms to improve model performance.

Author keywords: Machine learning — Predictive Modeling —  Chiropractic —  Healthcare service utilization

Author affiliations: Pain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare System, West Haven, Connecticut; Yale School of Medicine, Yale University, New Haven, Connecticut, United States

This abstract is reproduced with the perission of the publisher;  click on the above link for free full text. PDF | PubMed Record


 

   Text (Citation) Tagged (Export) Excel
 
Email To
Subject
 Message
Format
HTML Text     Excel



To use this feature you must register a personal account in My ICL. Registration is free! In My ICL you can save your ICL searches in My Searches, and you can save search results in My Collections. Be sure to use the Held Citations feature to collect citations from an entire search session. Read more search tips.

Sign Into Existing My ICL Account    |    Register A New My ICL Account
Search Tips
  • Enclose phrases in "quotation marks".  Examples: "low back pain", "evidence-based"
  • Retrieve all forms of a word with an "asterisk*", also called a wildcard or truncation.  Example: "chiropract*" retrieves chiropractic, chiropractor, chiropractors
  • Register an account in My ICL to save search histories (My Searches) and collections of records (My Collections)
Advanced Search Tips

:)